Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Bioengineered ; 13(2): 3797-3809, 2022 02.
Article in English | MEDLINE | ID: covidwho-2257273

ABSTRACT

Coronavirus Disease-2019 (COVID-19) has spread globally with catastrophic damages to the public health, social and economy since the beginning of the outbreak. In 2020, Southeast Asia proved that it could prevent the worst effects of a pandemic through the closure of activities and borders and movement restriction, as well as social distancing. Nevertheless, with the occurrence of the common variants of concern (VOCs), especially Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), Southeast Asia is facing a significant increase in the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Now, the area also has the threats of the spreading out of the dangerous variant - Omicron (B.1.1.529) from other close countries or regions. COVID-19 countermeasures such as closures and social distancing seem to be insufficient. Moreover, Southeast Asia is being held back by a shortage of vaccines and other medical resources. This work focuses on describing the COVID-19 situation, the virus variants, and the coverage of COVID-19 vaccination in the area. We also provide perspectives on the COVID-19 vaccine distribution, protecting the economic capitals, developing the green zone, and the importance of finding more vaccine supplies in Southeast Asia.


Subject(s)
COVID-19 , SARS-CoV-2 , Asia, Southeastern , COVID-19/epidemiology , COVID-19/mortality , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Humans , Vaccination/statistics & numerical data
2.
Case Studies in Chemical and Environmental Engineering ; 5:100184, 2022.
Article in English | ScienceDirect | ID: covidwho-1650981

ABSTRACT

The persistence of SARS-CoV-2 or its RNA on surfaces, points, or wastewaters may increase the risk of transmission of this virus. Therefore, we conducted this review to discuss the places and surfaces with the highest potential for infection and spread of the SARS-CoV-2 virus. Several common and public areas, hospitals, elevators, public transport, local markets, and surfaces such as public toilets, door handles, untreated and treated wastewaters, wastewater plants, and public washrooms are also considered major points for spreading of SARS-CoV-2. Highly contaminated surfaces or places often have materials or contain items made of materials on which the SARS-CoV-2 virus can persist (e.g., metal, wood, and plastic). For example, SARS-CoV-2 can exist up to 4 days on doorknobs made by those materials. For public places such as public transports, elevators, and local markets, crowding and enclosed spaces are major source for transmission. Several measures such as using copper alloy surfaces instead of metal surfaces, disinfectants, and suitable personal protective equipment have been suggested. Our research could be the basis to help develop studies on the existence and transmissibility of SARS-CoV-2 as well as its RNA to take measures to prevent and limit the harmful effects of COVID-19 pandemic.

3.
Bioengineered ; 12(1): 8594-8613, 2021 12.
Article in English | MEDLINE | ID: covidwho-1450347

ABSTRACT

COVID-19 is one of the most severe global health crises that humanity has ever faced. Researchers have restlessly focused on developing solutions for monitoring and tracing the viral culprit, SARS-CoV-2, as vital steps to break the chain of infection. Even though biomedical engineering (BME) is considered a rising field of medical sciences, it has demonstrated its pivotal role in nurturing the maturation of COVID-19 diagnostic technologies. Within a very short period of time, BME research applied to COVID-19 diagnosis has advanced with ever-increasing knowledge and inventions, especially in adapting available virus detection technologies into clinical practice and exploiting the power of interdisciplinary research to design novel diagnostic tools or improve the detection efficiency. To assist the development of BME in COVID-19 diagnosis, this review highlights the most recent diagnostic approaches and evaluates the potential of each research direction in the context of the pandemic.


Subject(s)
Biomedical Engineering/methods , COVID-19 Nucleic Acid Testing/methods , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Artificial Intelligence , Biosensing Techniques , CRISPR-Cas Systems , Humans , Immunoassay , Microfluidics , Public Health , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL